GuangDong Advanced Thermoplastic Polymer Technology Co., Ltd.
GuangDong Advanced Thermoplastic Polymer Technology Co., Ltd.
News
Check out the latest ATP Polymer news and videos

Selection Criteria for Common Thermoplastic Elastomers (TPEs)

Thermoplastic elastomers (TPE) operating temperature


It is important to remember that the thermoplastic nature of TPEs allows them to be processed, but also limits their use in high temperature applications. The continuous use temperature is the highest temperature at which the TPE will retain its elasticity and continue to function in an application.


Various types of TPEs exhibit a wide range of continuous use temperatures, and understanding the operating temperature of an application is the crucial first step in selecting the best TPE for that application. The continuous use temperature is expressed in Fahrenheit or Celsius.


Chemical or fluid exposure of thermoplastic elastomers (TPE)


Under continuous use temperature, various types of thermoplastic elastomers exhibit a wide range of chemical and fluid resistance. Each type of TPE has its own strengths and weaknesses when exposed to organic solvents, oils, acids, alkalis, or any other chemical or fluid.


To make a good material selection, it is important to know what types of chemicals or fluids the TPE may be exposed to. Chemical resistance or fluid resistance is typically expressed in terms of weight change, volume change, or specific performance changes caused by controlled exposure to a specific substance.


Hardness requirements and other properties of thermoplastic elastomers (TPE)


Hardness (usually measured in Shore A or D) may be the most commonly used property for differentiating between TPEs, but may also have the least correlation with a given application.


For example, two different TPEs may have the same hardness, but completely different bending moduli.


  • Tensile strength: As the name suggests, this property measures the tear resistance of a material. This is an important consideration for any application where a material may experience some form of damage, which could result in a type of tear strain. Tensile strength is measured in "pli" (pounds per inch) or "N/mm" (Newtons per millimeter).

  • Compression performance: The response of compression is important for sealing and gasket applications. Two measures of material performance under compression load include:

  • Compression permanent deformation: The ability of a material to return to its original shape after being subjected to a defined compression strain or load;

  • Compression stress relaxation: The ability of a material to continue to push back compression load over time;


Both are the results of "cold flow" or solid TPE plastic deformation, and both are influenced by time, temperature, and exposure to chemicals or fluids. Compression permanent deformation is expressed as a percentage of the unrecovered compression, while stress relaxation is expressed as a percentage or absolute level of the initial force disappeared.


  • Peeling strength: Peeling strength is a measure of how well TPEs adhere to rigid substrates.


While there is no agreed-upon testing standard for thermoplastic elastomers, the various methods used by TPE suppliers come from accepted testing methods for thermoset rubber and adhesives.


  • Adhesive failure: This failure occurs at the interface between TPE and rigid materials. Most connection failures are a combination of adhesive and cohesive failures; 100% bonding failure indicates that all TPEs have been torn off the substrate.


TPE materials often tear. This failure is not always a sign of poor performance. In fact, if the material has high tear strength, it may indicate that it has very high bonding strength.


  • Bonding failure: This failure occurs at the interface between TPE and rigid materials. Most connection failures are a combination of adhesive and cohesive failures; 100% bonding failure indicates that all thermoplastic elastomers (TPE) have been torn off the substrate.

Selection Criteria for Common Thermoplastic Elastomers (TPEs)

ATP Polymer News Recommendation

20 Feb, 2024
How Biological Compatibility TPU Elevates Medical Innovations
In recent years, the field of medical innovation has seen tremendous advancements and breakthroughs. One important aspect that has contributed to these advancements is the development and use of biolo...
15 Feb, 2024
The Application of High Density Cross-Linked Polyethylene for EV Charging Cable
In today's world, the demand for electric vehicles (EVs) is skyrocketing due to their eco-friendly nature and cost-efficiency. As more people switch to EVs, the need for reliable and durable charg...
10 Feb, 2024
Heat and Flexibility: Unraveling the Advantages of Cross-Linked Polyethylene (XLPE)
When it comes to choosing the right material for various applications, it is essential to consider important factors such as heat resistance, flexibility, and durability. Cross Linked Polyethylene (XL...
10 Feb, 2024
How High-Density Cross-Linked Polyethylene Stands up to Rigorous Conditions
When it comes to tough industrial applications, finding a material that can withstand rigorous conditions is crucial. One material that has proven to withstand the test of time is high-density cross-l...